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Abstract

Despite the promise of Multi-Task Learning in leveraging
complementary knowledge across tasks, existing multi-task
optimization (MTO) techniques remain fixated on resolving
conflicts via optimizer-centric loss scaling and gradient ma-
nipulation strategies, yet fail to deliver consistent gains. In
this paper, we argue that the shared representation space,
where task interactions naturally occur, offers rich informa-
tion and potential for operations complementary to existing
optimizers, especially for facilitating the inter-task comple-
mentarity, which is rarely explored in MTO. This intuition
leads to Rep-MTL, which exploits the representation-level
task saliency to quantify interactions between task-specific
optimization and shared representation learning. By steer-
ing these saliencies through entropy-based penalization and
sample-wise cross-task alignment, Rep-MTL aims to miti-
gate negative transfer by maintaining the effective training
of individual tasks instead pure conflict-solving, while ex-
plicitly promoting complementary information sharing. Ex-
periments are conducted on four challenging MTL bench-
marks covering both task-shift and domain-shift scenarios.
The results show that Rep-MTL, even paired with the basic
equal weighting policy, achieves competitive performance
gains with favorable efficiency. Beyond standard perfor-
mance metrics, Power Law exponent analysis demonstrates
Rep-MTL'’s efficacy in balancing task-specific learning and
cross-task sharing. The project page is available at HERE.

1. Introduction

Multi-Task Learning (MTL) [4] has garnered increasing at-
tention in recent years, with notable success in computer vi-
sion [14, 23], natural language processing [3, 50], and other
modalities [37, 38]. By leveraging multiple supervision sig-
nals at once, MTL models are expected to learn robust rep-
resentation with reduced cost but better generalization com-
pared to their single-task learning (STL) counterparts [20].

However, performance deterioration occurs as the tasks
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Figure 1. Overview of Rep-MTL and existing MTO methods. (a)
Both loss scaling and gradient manipulation focus on optimizer-
centric policies to address conflicts in model update. (b) Rep-MTL
exploits shared representation space to facilitate cross-task sharing
while preserving task-specific signals without optimizer changes.

involved may not necessarily exhibit significant correlation,
which induces conflicts in joint training [9, 66], i.e., com-
peting updates to the same architecture could impede the ef-
fective training of individual tasks, thus resulting in inferior
convergence and worse generalization [22, 67]. This hence
makes optimization an integral part of MTL, with its crux
believed to be alleviating the negative transfer among tasks
while exploiting their positive complementarity [57, 60, 64].
As such, various studies have focused on addressing neg-
ative transfer through optimizer-centric loss scaling [33, 35]
and gradient manipulation [2, 49]. Although more precise
multi-task optimization (MTO) strategies have been intro-
duced, their inconsistent efficacy has been increasingly rec-
ognized, especially in demanding scenarios [24, 27, 48, 64].
In parallel, the probe of task relationships has been extended
into shared representation space [1, 21, 43], in which task
saliencies are quantified by gradients w.r.t. shared represen-
tation [53], opening new avenues for MTO. In this paper, we
argue that the representation space, where task interactions
naturally occur, offers rich information and potential for op-
erations beyond (and complementary to) optimizer designs,
especially for facilitating task complementarity explicitly.
To this end, we introduce Rep-MTL, a representation-
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centric approach that modulates multi-task training via task
saliency (Sec. 3.1). As shown in Figure 2, it comprises two
associative modules: (i) Task-specific Saliency Regulation
(TSR) that penalizes the task saliency distributions through
an entropy-based regularization, ensuring that task-specific
patterns can be reserved and remain distinctive during train-
ing, thereby mitigating negative transfer in MTO. (ii) Cross-
task Saliency Alignment (CSA). Since prior methods rarely
touched on this, we start with an intuitive question: What
additional message does representation space provide us
during training? — the rich sample-wise feature dimensions
first come to our mind and inspire our design of CSA, which
explicitly promotes inter-task complementarity by aligning
sample-wise saliencies in a contrastive learning paradigm.
Together, Rep-MTL as a regularization requires no further
modifications to either optimizers or network architectures.

As aforementioned, MTO methods might perform worse
in demanding settings. To rigorously validate Rep-MTL’s
effectiveness, we evaluate it from three key aspects: First,
we conduct experiments on four challenging MTL bench-
marks that encompass both task-shift and domain-shift sce-
narios, where most MTO baselines exhibit negative perfor-
mance gains. Second, we examine Rep-MTL’s robustness
and practical applicability by analyzing its sensitivity to
hyper-parameters (Sec. 4.5), learning rates (Appendix D.3),
and its optimization speed (Sec. 4.6). Third, beyond stan-
dard performance metrics, we apply Power Law (PL) expo-
nent analysis [44, 46] to validate if and how Rep-MTL influ-
ences model updates (Sec. 4.3). Specifically, it verifies how
different trained model parts (e.g., backbone or decoders) fit
their related objectives (overall or task-specific losses) un-
der different MTO methods. Overall, the empirical results
show that: (i) Rep-MTL consistently achieves competitive
performance, even with the basic equal weighting (EW). (ii)
Rep-MTL is more efficient than most gradient manipulation
methods (e.g., ~26% and ~12% faster than Nash-MTL [49]
and FairGrad [2], respectively). (iii) It successfully main-
tains effective training of individual tasks while exploiting
inter-task complementarity for more robust MTL models.

Our contributions can thus be summarized as follows:

* We introduce Rep-MTL, a representation-centric MTO
approach that aims to mitigate negative transfer while ex-
ploiting inter-task complementarity with task saliency.

* Rep-MTL as a regularization method complements exist-
ing MTO strategies, achieving competitive performance
on diverse MTL benchmarks even with the basic EW.

* Observation and insights are obtained from empirical ev-
idence: (i) Mitigating negative transfer could go beyond
pure conflict-solving strategies. TSR offers another path
by ensuring the effective training of individual tasks. (ii)
The explicit cross-task sharing in CSA has shown signif-
icant potential, but remains under-explored in MTO.

2. Related Work
2.1. Multi-Task Optimization

Prior work in MTO operates under the assumption that the
negative transfer stems from task conflicts in gradient direc-
tions and magnitude. Thus, three types of optimizer-centric
methods have been developed: loss scaling, gradient manip-
ulation, and hybrid ones. Below, we discuss where existing
studies fall on each group and where our Rep-MTL stands.

Loss Scaling. Loss scaling methods optimize both shared
and task-specific parameters by adjusting task-specific loss
weights, evolving from EW [68] to more complex policies,
such as homoscedastic uncertainty-based scaling [22], and
loss changing-based adaptation [35]. GLS [10] minimizes
the geometric mean loss, while IMTL-L [34] proposes an
adaptive loss transformation to maintain constant weighted
losses. RLW [28] employs probabilistic sampling from nor-
mal distributions, and IGBv2 [12] utilizes improbable gaps
for scale computation. More recently, FAMO [33] balances
different losses by decreasing them approximately at an
equal rate. GO4Align [57] goes a step further through task
grouping-based interaction for dynamic progress alignment.

Gradient Manipulation and Hybrid Methods. Gradient
manipulation techniques adjust and aggregate task-specific
gradients w.r.t. shared parameters to address conflicts. Early
attempts focused on basic gradient modification: Grad-
Norm [8] equalizes gradient magnitudes with learned task
weights, whereas PCGrad [66] resolves conflicts by gradi-
ent projection. GradVac [63] and GradDrop [9] introduce
the universal alignment and consistency-based gradient sign
dropout, respectively. MGDA [13] for the first time views
the MTO issue as a multi-objective optimization problem
and pioneered the search for Pareto-optimal solutions. Sub-
sequently, this paradigm was improved by CAGrad [32],
which optimizes for the worst-case task improvement, and
MoCo [15], which incorporates momentum estimation to
eliminate bias. Nash-MTL [49] incorporates game theory to
find Nash bargaining solutions, while IMTL-G [34] updates
gradient directions that all their cosine similarities are equal.
Recon [58] first employs Neural Architecture Search to deal
with gradient conflicts. More recently, Aligned-MTL [55]
leverages principal component alignment for stability. Fair-
Grad [2] and STCH [31] reformulate MTO with utility max-
imization and smoothed Tchebycheff optimization. Hybrid
methods [29, 30, 34, 36] combine the above two groups of
technique to cash in their complementary strengths.

Shared Representation in MTO. Several studies [49,
54, 55] have utilized gradients w.r.t. shared representa-
tion rather than parameters to update models, which re-
duces the computational overhead with limited backprop-
agation through task-specific decoders. Among these, Ro-
toGrad [21] and SRDML [1] stand as the closest studies
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Figure 2. The Rep-MTL framework. It comprises two complementary task saliency driven modules: (i) Task-specific Saliency Regulation
(TSR) that penalizes the saliency distribution to emphasize task-salient patterns during training, thereby mitigating negative transfer among
tasks. (ii) Cross-task Saliency Alignment (CSA) that facilitates inter-task complementarity by aligning saliencies while maintaining task
distinctiveness through positive and negative pairs. Together, Rep-MTL enables transfer across tasks while keeping task-specific patterns.

to Rep-MTL. RotoGrad employs feature rotation to mini-
mize task semantic disparities, while SRDML learns task
relations by regularizing task-wise similarity of saliencies.
While they have made substantial progress, they solve task
conflicts with task similarities and leave the essential inter-
task complementarity entirely to the MTL architectures.

2.2. MTL Architectures

Hard parameter sharing (HPS) architecture [4], while fun-
damental for MTL, suffers from negative transfer among
tasks. Subsequent work has thus focused on facilitating
cross-task positive transfer through various architecture de-
signs: from learnable fusion weights (e.g., Cross-stitch [47],
Sluice network [51]), to dynamic expert combinations (e.g.,
MoE [56], MMOoE [39], PLE [61]), and attention-based fea-
ture extraction like MTAN [35]. Moreover, several studies
explore knowledge transfer at output layer through sequen-
tial modeling (ESSM [40]) or distillation (CrossDistil [65]).
While these architectures have proven effective in exploit-
ing inter-task complementarity, MTO has mainly focused
on addressing negative transfer by solving gradient con-
flicts. In this work, we aim to bridge this gap by introducing
an MTO method that explicitly facilitates such complemen-
tarity while maintaining the canonical HPS architecture.

3. Methodology

This section presents Rep-MTL, which advances multi-task
learning through task saliency regularization in shared rep-
resentation space. We first preview the MTO problem and
representation-level task saliency (Sec. 3.1). Subsequently,
we propose two complementary components of Rep-MTL:
(i) task-specific saliency regulation that aims to mitigate
negative MTL transfer by preserving task-salient learning

patterns (Sec. 3.2), and (ii) sample-wise cross-task align-
ment for facilitating inter-task complementarity (Sec. 3.3).

3.1. Preliminaries and Task Saliency

Consider a set of T correlated tasks {7;}7_;, where T' €
N denotes the total number of tasks. In HPS architectures,
model parameters 6 = {0, {6;}7_,} comprise shared pa-
rameters 0 for the backbone and task-specific parameters
{6, }L_, for decoders, where each §; corresponds to task 7;.

For illustration, we present the framework in the con-
text of computer vision. Given an input RGB image X €
R3*HXW "3 shared encoder Ey_ (-) maps the input X into a
latent feature space Z = Ey (X) € REXH'>*W' where C
is channel dimension. Task-specific decoders { Hp, (-)}1_,
then transform shared representation Z to diverse predic-
tions {Y;}7_,, where Y; = Hy,(Z). For each task T;, we
derive the empirical loss function £;(fs, 6;). The conven-
tional MTL learning objective can thus be formulated as:

T
0 = argnbinZwtﬁt(Qs,Ht) (1)
t=1

where w; > 0 denotes task-specific weights adjusted by loss
scaling methods. To prevent negative transfer, where opti-
mizing one task deteriorates others due to the conflicting
parameter updates, gradient manipulation policies harmo-
nize parameter-wise gradients {VyL;}7_,, especially those
w.r.t. shared parameters 6, during back-propagation:

9t = Vo, L:(05,0,), §=nh{g:}=1) )

where g; represents task-specific gradients and g directly
guides the updates of 6, through specifically tailored trans-

formation function A(-) in optimizers: 6% = 6, —n - g.



As aforementioned, this work follow the representation-
centric approach in MTO to first characterize how differ-
ent tasks {T;}L_, interact within the shared representation
space through task saliency S;, which could be quantified
by its gradient w.r.t. shared representation Z as:

Si = VzLi(0,0,) € REXCH XW’ 3)

where B denotes the training batch size. The feature-level
{S:}L_ | here quantifies how sensitively each task’s objec-
tive responds to the changes within representations [43, 53].
Unlike parameter gradients for direct model updates, these
saliencies serve as dynamic indicators of representation-
level task dependencies, providing informative learning sig-
nals for identifying and even modulating task interactions.
More importantly, this representation-centric perspec-
tive enables us to proactively approach cross-task infor-
mation sharing. By regulating the task saliency, we can
identify features crucial for specific tasks (helping preserve
task-specific patterns and thus mitigate negative transfer)
and which features show consistent importance (facilitat-
ing complementarity). Note that prior work in MTO have
mainly focused on resolving conflicts while neglecting the
potential for explicitly leveraging inter-task complementar-
ity, thus leaving this part to MTL architectures [35, 47, 65].
In the following sections, we present two complemen-
tary modules based on the above task saliency {S;}7_;: (i)
an entropy-based saliency regularization to preserve task-
specific learning patterns, and (ii) a sample-wise contrastive
alignment to explicitly exploit inter-task complementarity.

3.2. Task-specific Saliency Regulation

As aforementioned, the challenge lies in maintaining each
task’s effective training to prevent deterioration from nega-
tive transfer. To achieve this goal, we employ an entropy-
based saliency regularization that preserves the task-specific
learning patterns in representation space. As shown in Fig-
ure 2, instead of computing task similarity like most MTO
methods, we begin by aggregating channel-wise saliencies
in Eq. 3 to capture spatial patterns of task importance:

oy 1 ’ ’
S= 17 > Sibenw € REHXW )

where S; maintains the original spatial structure while re-
ducing dimensionality for computational efficiency. Thus,
S captures how each spatial region Z}, ,, contributes to di-
verse task-specific learning processes. To further charac-
terize these regions’ relative importance across tasks, we
normalize each 5‘” € RE into task-wise distribution P; S

[Sit
T =
2 k=1 il

Piy = ®)

This transforms raw spatial saliencies {S; ;}7_; into in-
terpretable probability distribution that identifies regions
where specific tasks exhibit salient learning patterns, bridg-
ing task- and feature-level characteristics. Holistically, high
probabilities indicate regions important to individual tasks,
while uniform ones suggest rather common elements. Thus,
to encourage an MTL model that keeps task-salient patterns
during training, we introduce an entropy-based regulation:

1 BH'W' T
Ets’r(Z) = W Z (* Z Pi,t log Pi,t) (6)
=1 t=1

This term encourages distinct task saliencies by penal-
izing high-entropy distributions. When spatial regions are
task-salient (indicated by low entropy), the regularization
L;s encourages their task-specific patterns by penalizing
excessive sharing caused by negative transfer. Empirical
analysis in Sec. 4.3 and Figure 4 further demonstrate the
improved task-specific learning quality and successful neg-
ative transfer mitigation of L. The rest of this section ex-
pands on the sample-wise contrastive alignment to further
promote beneficial information sharing across tasks.

3.3. Sample-wise Cross-Task Saliency Alignment

While saliency distribution helps preserve task-specific dy-
namics, hitting optimal MTL performance requires lever-
aging common patterns across tasks. To address this com-
plementary part, we present a contrastive alignment mecha-
nism, as shown in Figure 2, that facilitates beneficial infor-
mation sharing while maintaining task distinctiveness.

The core idea behind this is that similar patterns within
task saliencies {S;}]_; indicate task-generic information
that could benefit multiple tasks and should be consistently
represented. To identify these shared patterns, we compute
the affinity maps of saliency S; for task 7;:

M; =88, € RB*E*C, (7

where S; indicates the saliency in Eq. 3. These affinity
maps capture the mutual influence patterns between fea-
tures in each task’s optimization, encoding how different
channels interact during training. Drawing inspiration from
contrastive learning [6, 7, 16, 18], we compute the reference
anchor Ay, for each sample b € [B], which serves as candi-
dates for information sharing in subsequent alignment:

1

Ao = T

D Snwp A= ApA] €RTC(8)
hw

where Sy, denotes saliency maps for sample b. These an-
chors serve as stable points for cross-task alignment, cap-
turing potential shared dynamics that emerge across diverse
tasks for identical samples. We then Ly-norm both anchors
./Zlb and affinities M, to obtain z;' and zi, ensuring scale-
invariant comparisons. For anchors z;, we treat the related



Table 1. Performance on NYUv2 [59] dataset (3 indoor scene understanding tasks) with DeepLabV3+ [5] network architecture. 1 (J)
indicates higher (lower) metric values are better. The best and second-base results for each metric are highlighted in bold and underline,
respectively. ¥ indicates results from our implementation using LibMTL [27] codebase, which provides official support for related methods.

Segmentation Depth Estimation Surface Normal Prediction
Angle Dist. Within ¢° ApuT AP evicT

Method mloUT Pix. Acc.t Abs. Err] Rel. Err] Mean] Median] 11.257 22.517 307
Single-Task Baseline  53.50 75.39 0.3926 0.1605 21.99 15.16 39.04 65.00 75.16 0.00 0.00
EwW 53.93 75.53 0.3825 0.1577 23.57 17.01 35.04  60.99 72.05 —1.784045 —3.85
GLS [10] 54.59 76.06 0.3785 0.1555 22.71 16.07 36.89  63.11 73.81 +0.3040.30 —1.10
RLW [28] 54.04 75.58 0.3827 0.1588 23.07 16.49 36.12  62.08 7294 —1.1040.40 —2.64
UW [22] 54.29 75.64 0.3815 0.1583 23.48 16.92 3526 61.17 7221 —1.5240.39 —3.54
DWA [35] 54.06 75.64 0.3820 0.1564 23.70 17.11 34.90 60.74 7181 —1.7l4g.25 —3.96
IMTL-L [34] 53.89 75.54 0.3834 0.1591 23.54 16.98 35.09  61.06 7212 —1.9249.95 -3.90
IGBv2 [12] 54.61 76.00 0.3817 0.1576 22.68 15.98 3714 63.25 73.87 +0.05+0.29 -1.15
MGDA [13] 53.52 74.76 0.3852 0.1566 22.74 16.00 3712 63.22 73.84 —0.6440.25 —1.65
GradNorm [8] 53.91 75.38 0.3842 0.1571 23.17 16.62 35.80 61.90 7284 —1.244015 —2.90
PCGrad [66] 53.94 75.62 0.3804 0.1578 23.52 16.93 35.19 6117 7219 —1.57+0.44 —3.60
GradDrop [9] 53.73 75.54 0.3837 0.1580 23.54 16.96 35.17  61.06 72.07 —1.8540.39 —3.84
GradVac [63] 54.21 75.67 0.3859 0.1583 23.58 16.91 35.34  61.15 7210 —1.7540.39 —3.72
IMTL-G [34] 53.01 75.04 0.3888 0.1603 23.08 16.43 36.24  62.23 73.06 —1.8940.54 —3.09
CAGrad [32] 53.97 75.54 0.3885 0.1588 22.47 15.71 3777 63.82 7430 —0.2740.35 —0.98
MTAdam [42] 52.67 74.86 0.3873 0.1583 23.26 16.55 36.00 61.92 7274 —1.9710.23 —3.36
Nash-MTL [49] 53.41 74.95 0.3867 0.1612 22.57 15.94 3730 63.40 74.09 —1.0l40.13 —1.76
MetaBalance [19] 53.92 75.57 0.3901 0.1594 22.85 16.16 36.72 6291 73.62 —1.0640.17 —2.15
MoCo [15] 52.25 74.56 0.3920 0.1622 22.82 16.24 36.58  62.72 7349 2251051 —3.03
Aligned-MTL [55] 52.94 75.00 0.3884  0.1570  22.65  16.07  36.88 63.18 73.94 0984055  1.92
FairGrad® [2] 53.01 75.14 0.3795 0.1573 22.51 16.02 36.93  63.39 T74.17 0.4740.56 1.46
STCH? [31] 53.86 75.49 0.3759 0.1547 22.69 16.17 36.70  62.96 73.82 +0.0640.11 —1.35
IMTL [34] 53.63 75.44 0.3868 0.1592 22.58 15.85 3744 63.52 74.09 —0.57+0.24 —1.38
DB-MTL [30] 53.92 75.60 0.3768 0.1557 21.97 15.37 38.43 64.81 7524 +41.1540.16 +0.56
Rep-MTL (EW) 54.59 76.04 0.3750 0.1542 21.91 15.28 38.37  64.72  75.05 +1.7040.29 +0.95

task affinities z; from identical sample as positive pairs,

while those of different samples within a batch serve as neg- T

ative pairs. As such, cross-task alignment is formulated as: Lrep = Z L4(05,00)+Nisr Lisr (Z) +Aosa Losa(Z), (10)

t=1

B .
1 exp(sim(zy, 2})/7)
£csa = E § - 10g

— > e XP(sim (2, 2¢) /)

9

where sim(-, -) denotes cosine similarity and 7 controls the
concentration of positive pairs (z{!, zf) relative to the neg-
ative ones (zf, z¢). As such, the balance between positive
and negative pairs as well as the inclusion of batch informa-
tion maintains task distinctiveness while promoting infor-
mation sharing across tasks. Empirical analysis in Sec. 4.3
and Figure 3 shows that this contrastive saliency alignment
facilitates models’ optimization towards the overall MTL
objectives, indicating that the intrinsic inter-task comple-
mentarity has been effectively excavated by CSA L 4.

3.4. Joint Optimization

To achieve robust multi-task training that both preserves
task-specific learning signals and enables cross-task shar-
ing, we combine MTL objectives with above regularization:

where A; and A5 balance the influence of above two regu-
larization terms. During joint optimization, gradients from
all these components flow through the multi-task model, in-
troducing implicit adjustment to model parameter updates.

4. Experiment

We evaluate Rep-MTL on four MTO benchmarks covering
both task-shift and domain-shift scenarios: (i) NYUv2 [59]
(3-task indoor scene understanding), (ii) Cityscapes [11]
(2-task urban scene understanding), (iii) Office-31 [52] (3-
domain image classification), and (iv) Office-Home [62] (4-
domain image classification). To ensure thorough and rigor-
ous evaluation, we follow the more challenging benchmark
settings [30] for NYUv2 and Cityscapes, where most base-
lines exhibit negative performance gains (see Table 1, 2).
In this section, we first introduce the baselines and evalu-
ation metrics, followed by quantitative results on scene un-
derstanding (Sec. 4.1) and image classification (Sec. 4.2).



Table 2. Performance on Cityscapes [11] dataset (2 scene under-
standing tasks) with DeepLabV3+ [5] architecture. 1 ({) indicates
higher (lower) metric values are better. The best and second-best
results are marked in bold and underline, respectively. * indicates
results from our implementation using LibMTL [27] codebase.

Segmentation Depth Estimation ApgaT

Method mloUT Pix. Acc.T Abs. Err| Rel. Err]

Single-Task Baseline  69.06 91.54 0.01282 43.53 0.00
EW 68.93 91.58 0.01315 45.90 2.0540.56
GLS [10] 68.69 91.45 0.01280 44.13 —0.3941.06
RLW [28] 69.03 91.57 0.01343 44.77 1.9140.21
UW [22] 69.03 91.61 0.01338 45.89 —2.4540.68
DWA [35] 68.97 91.58 0.01350 45.10 2.2440.28
IMTL-L [34] 68.98 91.59 0.01340 45.32 2.1540.88
IGBv2 [12] 68.44 91.31 0.01290 45.03 —1.3140.61
MGDA [13] 69.05 91.53 0.01280 44.07 0.1940.30
GradNorm [8] 68.97 91.60 0.01320 44.88 —1.5540.70
PCGrad [66] 68.95 91.58 0.01342 45.54 2.3641.17
GradDrop [9] 68.85 91.54 0.01354 44.49 —2.0240.74
GradVac [63] 68.98 91.58 0.01322 46.43 2.4540.54
IMTL-G [34] 69.04 91.54 0.01280 44.30 —0.4640.67
CAGrad [32] 68.95 91.60 0.01281 45.04 0.8740.88
MTAdam [42] 68.43 91.26 0.01340 45.62 2.7440.20
Nash-MTL [49] 68.88 91.52 0.01265 45.92 —1.1140.21
MetaBalance [19] 69.02 91.56 0.01270 45.91 1.1840.58
MoCo [15] 69.62 91.76 0.01360 45.50 —2.4041.50
Aligned-MTL [55] 69.00 91.59 0.01270 44.54 0.4340.44
FairGrad* [2] 68.84 91.48 0.01270 46.26 —1.4340.63
STCH? [31] 68.21 91.23 0.01280 43.17 —0.1540.38
IMTL [34] 69.07 91.55 0.01280 44.06 0.3240.10
DB-MTL [30] 69.17 91.56 0.01280 43.46 +0.2040.40
Rep-MTL (EW) 69.72 91.85 0.01270 43.42 +0.6240 53

We then present PL exponent analysis (Sec. 4.3) with abla-
tion studies (Sec. 4.4) that validate Rep-MTL’s effectiveness
beyond benchmarking results. There are also evaluations to
assess Rep-MTL’s robustness and applicability, including
sensitivity of hyperparameters (Sec. 4.5) and learning rates
(Appendix D.3), and also its optimization speed (Sec. 4.6).

Baselines. We compare our Rep-MTL against 23 popular
MTO algorithms, including loss scaling policies (GLS [10],
RLW [28], UW [22], DWA [35], IGBv2 [12]), gradient
manipulation (MGDA [13], GradNorm [8], PCGrad [66],
GradDrop [9], GradVac [63], CAGrad [32], MTAdam [42],
Nash-MTL [49], MetaBalance [19], MoCo [15], Aligned-
MTL [55]), and hybrid approaches (IMTL [34], DB-
MTL [30]). We also implement recent FairGrad [2], and
STCH [31] on NYUv2 [59] and Cityscapes [11] using the
open-source LibMTL [27] codebase. For all included algo-
rithms, HPS architecture is employed for fair comparison.

Evaluation Metrics. Task evaluation follows established
metrics [30, 35, 55]: For semantic segmentation, we use
mean Intersection over Union (mloU) and pixel-wise accu-
racy (Pix Acc). Depth estimation performance is measured
using relative error (Rel Err) and absolute error (Abs Err).
Surface normal prediction is evaluated with mean and me-
dian angle errors, along with percentage of normals within
angular thresholds of ¢° (¢t = 11.25,22.5,30). We quantify
MTL performance improvements relative to STL baselines

as average gains over tasks Apg,gx and metrics Apmegric:

T
. > (=1 Mg = Moe)

Apmetri(: = 7
T~ My ¢
1 a (Mm tk — My tk‘)
—_ _ Otk ) ’
Apusk = 7 ;H( 1) T (12)

where 7' denotes the total number of tasks, n, represents the
number of evaluation metrics for task ¢, and M,,, ; indicates
the performance of method m on task ¢. The sign coeffi-
cient oy (041) equals O for positive metrics (e.g., mloU, Pix
Acc) and 1 for negative metrics (e.g., Err, Dist.), ensuring
consistent interpretation. Each experiment is repeated three
times. Please refer to Appendix A for experimental settings.

4.1. Scene Understanding Tasks

Datasets and Settings. We evaluate our Rep-MTL on two
scene understanding benchmarks: (i) NYUv2 [59] com-
prises three tasks (13-class semantic segmentation, depth
estimation, and surface normal prediction), with 795 train-
ing and 654 validation images; (ii) Cityscapes [11] owns
two tasks (7-class semantic segmentation and depth estima-
tion) with 2975 training and 500 testing images. Following
previous settings [30], we employ DeepLabV3+ [5] as our
architecture, where a dilated ResNet-50 [17] as the encoder
and ASPP as decoders. Please view Appendix A for details.

NYUv2 Results. Table | shows that Rep-MTL achieves
competitive multi-task performance gains on the NYUv2
benchmark, as measured by Apgsk and Appeuic. (i) EW
baseline comparison: Compared to the gray-marked EW
baseline, Rep-MTL shows significant improvements, with
gains of +3.48 in Apgyg and +4.8 in Appeyic, Which im-
proves performance the most without extra optimizer mod-
ifications. (ii) SOTA comparison: Rep-MTL outperforms
previous leading methods, DB-MTL [30], by about 48% in
Appsk (+1.70 vs. +1.15) and nearly ~ 70% in Apmeuic
(+0.95 vs. 4-0.56). Furthermore, Rep-MTL surpasses DB-
MTL in 6/9 sub-task metrics, showcasing its effectiveness.

Cityscapes Results. Table 2 demonstrates Rep-MTL’s ef-
fectiveness on the Cityscapes benchmark, where it achieves
the best results in semantic segmentation and the second-
best results in two depth estimation metrics. (i) EW base-
line comparison: Rep-MTL improves upon EW baseline
by +2.67 in Apiask, showcasing its ability to improve MTL
performance across datasets. (ii) SOTA comparison: DB-
MTL [30] is the only method that surpasses STL baseline
on this challenging benchmark setting. However, Rep-MTL
slightly exceeds the powerful DB-MTL in Apgg (+0.62
vs. +0.20), which indicates an improvement of multi-task
dense prediction in outdoor scene understanding scenarios.
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Figure 3. Comparison of PL exponent alpha [46] for backbone pa-
rameters trained with diverse MTO methods on NYUv2 [59]. It
validates how well the backbone adapts to MTL objectives, where
lower values indicate more effective training. Values outside [2, 4]
suggest potential over- or under-training. We leverage this to show
how methods affect model updates, as well-trained backbones sug-
gest beneficial cross-task sharing to the overall MTL objectives.

4.2. Image Classification Tasks

Datasets and Settings. To further validate Rep-MTL'’s ef-
fectiveness in domain-shift scenarios, the following datasets
are included: (i) Office-31 [52] which contains 4110 images
from three domains (tasks): Amazon, DSLR, and Webcam.
Each task has 31 object categories. (ii) Office-Home [62]
which contains 15500 images from four domains (tasks):
artistic, clipart, product, and real-world. Each of them has
65 object categories in office and home settings. We use the
data split as 60% for training, 20% for validation, and 20%
for testing. Following Lin et al. [30], we use ResNet18 as
network architecture. Please view Appendix A for details.

Results. As shown in Table 3, Rep-MTL still maintains
its effectiveness in domain-shift scenarios [62]. Concretely,
Rep-MTL surpasses EW by +0.97 in average performance
and achieves a positive Apggsk of +0.41, which advances the
previous SOTA by approximately 140% (+0.41 vs. +-0.17).
This validates Rep-MTL’s capability to exploit inter-task
complementarity even if there are domain gaps. Situations
on Office-31 [52] (Appendix B) are even more challenging,
where Rep-MTL exhibits the best results on Webcam, aver-
age performance (Avg.), and Apgg improvement, slightly
outperforming previous SOTA by 25% (4-1.31 vs. +1.05).

4.3. Power Law (PL) Exponent Analysis

We analyze Power Law (PL) exponent alpha [44, 46] de-
rived from Heavy-Tailed Self-Regularization (HT-SR) the-
ory [41, 45]. For each layer’s weight matrix W, the PL ex-
ponent is computed by fitting the Empirical Spectral Den-
sity of X = WTW to p(\) ~ A™%, where \ are eigen-
values of the correlation matrix. This scale-invariant metric
has proven effective in evaluating training quality without
access to training or test data [25, 26], making it particularly

Table 3. Performance on Office-Home [62] dataset with 4 diverse
image classification tasks. 1 indicates the higher the metric values,
the better the methods’ performance. The best and second-best re-
sults of each metric are marked in bold and underline, respectively.

Method Artistic  Clipart Product Real Avg.t Ap T
Single-Task Baseline ~ 65.59 79.60 90.47  80.00 78.91 0.00
EW 65.34  78.04  89.80  79.50 7817107 —0.9240s50
GLS [10] 64.51 76.85 89.83 79.56  77.6940.27 —1.5840.46
RLW [28] 64.96 7819  89.48  80.11 78.18. 012 —0.924014
UW [22] 65.97 77.65 89.41  79.28 78.08.40.30 0.98.40.46
DWA [35] 65.27 77.64 89.05  79.56 77.8840.28 1.2640.49
IMTL-L [34] 65.90 77.28 89.37  79.38 77.9840.38 1.1040.61
IGBv2 [12] 65.59 T7.57 89.79 7873 T77.9240.21 1.2140.02
MGDA [13] 64.19 77.60 89.58  79.31 T7.6740.20 1.6140.34
GradNorm [8] 66.28 77.86 88.66  79.60 78.1040.63 —0.9040.93
PCGrad [66] 66.35 77.18 88.95  79.50 77.994019 —1.0440.32
GradDrop [9] 63.57 77.86 89.23  79.35 77.5040.23 —1.8640.24
GradVac [63] 65.21 77.43 89.23 78.95 77711019 —1.4940.28
IMTL-G [34] 64.70 ey 89.61 79.45 77984038 —1.10+0.61
CAGrad [32] 64.01 77.50 89.65 79.53  77.731016 —1.50+0.20
MTAdam [42] 62.23  77.86  88.73  77.94 76.691065 —2.91i0ss
Nash-MTL [49] 66.29 78.76 90.04 80.11 78.801052 —0.0840.69
MetaBalance [19] 64.01 77.50 89.72 79.24 77611042 —1.704054
MoCo [15] 63.38 79.41 90.25  78.70 77.93 -
Aligned-MTL [55] 64.33 76.96 89.87  79.93 TT.774070 —1.5040.89
IMTL [34] 64.07 76.85 89.65  79.81 77.5940.20 1.7240.45
DB-MTL [30] 67.42 77.89 90.43  80.07 78.95, 435 +0.1740.44
Rep-MTL (EW) 67.40 78.75 90.37  80.04 79.14.041 +0.414058

suitable for analyzing MTL models: « quantifies how well
different model parts (e.g., shared backbone or task-specific
decoders) adapt to their corresponding objectives (e.g., the
overall MTL loss or task-specific losses). Thus, by exam-
ining « values of different components of MTL model pa-
rameters, we can validate both the MTO methods’ ability to
assist the training process, i.e., mitigating negative transfer
among tasks while exploiting inter-task complementarity.
In practice, well-trained models typically exhibit « € [2, 4],
while poorly-trained or over-parameterized models tend to
show o > 4, providing an applicable tool for assessing the
overall effectiveness of MTO methods. In particular, a low
« value for backbone often indicates effective cross-task in-
formation sharing for the overall MTL objectives, while low
and balanced values across heads suggest high-quality train-
ing of individual tasks, thus indicating less negative transfer.

In this work, we analyze DeepLabV3+ models trained
with different MTO methods on NYUv2 [59]. As shown
in Figure 3, models trained with Rep-MTL exhibit superior
« = 2.92 for shared parameters 65 compared to other MTO
methods, which indicates more favorable inter-task comple-
mentarity. Moreover, Figure 4 reveals that Rep-MTL yields
lower and more balanced PL exponent (2.51,2.46, 2.53)
for decoders, demonstrating effective training of individual
tasks, thereby mitigating negative transfer. Please view Ap-
pendix D for more details. We also incorporate PL exponent
analysis into ablation studies in Sec. 4.4 to explore how the
TSR and CSA modules separately influence model training.

4.4. Ablation Study

The proposed Rep-MTL includes two key components: (i)
TSR optimizing individual task learning via entropy-based
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Figure 4. Visualization of PL exponent alpha [44, 46] for tasks-specific heads (3 tasks) trained with different MTO methods on NYUv2 [59].
PL exponent quantifies how well each decoder adapts to its task-specific objective, where lower values practically indicate more effective
model training. Values outside the range [2, 6] suggest potential over- or under-training due to task conflicts. The variation across decoders
of each method indicates training imbalance. We employ this to evaluate how diverse MTO approaches influence decoder parameter
updates, as well-trained decoders should exhibit both low and balanced values, indicating effective individual task training with successful
negative transfer mitigation. For display, we constrain « range to (0, 6) though EW results (10.26, 7.01, 14.25) extend beyond this range.

regularization, and (ii) CSA which facilitates inter-task in-
formation sharing. Thus, to validate the contribution of each
component, we conduct ablation studies using standard per-
formance metrics and PL exponent analysis on NYUv2 [59]
and Cityscapes [ 1 1] with results in Table 4 and Appendix C.

The CSA Module. Table 4 examines four configurations:
(i) a baseline using neither component; (ii) CSA only; (iii)
TSR only; and (iv) complete Rep-MTL with both compo-
nents. The results demonstrate that both TSR and CSA indi-
vidually contribute to positive Apy,sk, while their combina-
tion yields the best results, showcasing their effectiveness.
Notably, CSA alone yields greater performance gains than
TSR alone, which is corroborated by our PL exponent anal-
ysis (Appendix C.3). It shows that even without TSR, CSA
helps maintain balanced PL exponents across tasks-specific
heads relative to baselines, suggesting that CSA effectively
enables the model to leverage inter-task complementarity
for joint training. This also shows the importance of explicit
designs for exploiting inter-task complementarity in MTO.

The TSR Module. Beyond standard performance met-
rics, PL exponent analysis provides deeper insights into
how each component functions. As shown in Appendix C.2,
CSA leads to lower backbone PL exponent o within op-
timal range, indicating more effective task-generic feature
learning from shared information. Meanwhile, TSR yields
lower and more balanced PL exponents across task-specific
decoders (Appendix C.3), demonstrating its capability in
maintaining effective training of individual tasks, thereby
mitigating negative transfer. It shows that tackling negative
transfer could go beyond pure conflict-resolving designs.
Approaches like TSR, which aim to emphasize individual
tasks’ training, may represent a promising and complemen-

tary direction. Together, these findings provide compelling
evidence for both TSR and CSA’s effectiveness.

4.5. Hyperparameter Sensitivity

For practical deployment, robust algorithms are expected
to maintain stable performance across a reasonable range of
hyperparameter settings. This directly impacts the method’s
applicability, especially in resource-constrained scenarios.

Table 4. Ablation study of Rep-MTL comprising two complemen-
tary components on NYUv2 [59] and Cityscapes [11] in terms of
task-level performance gains Apgsk 1 relative to STL baselines.

Cross-task Saliency — Task-specific Saliency NYUv2 Cityscapes
Alignment (CSA) Regulation (TSR) ApgaT ApggT

—1.7840.45 —2.0510.56

|/ +1.0640.27 +0.2110.68

v +0.2340.20  —0.3410.24

|/ / +1-70i0.29 +0-62i0,53

Empirical analysis in Appendix D.l verifies that our
Rep-MTL consistently achieves positive gains (Apgsk > 0)
across a wide range of weighting coefficients (A¢sy, Acsq €
[0.7,1.5]), which reduces the need for meticulous hyperpa-
rameter tuning. We also analyze Rep-MTL’s learning rate
sensitivity in Appendix D.3 to further show its robustness.

4.6. Efficiency Analysis

Optimization speed remains crucial for MTL. Thus, we con-
duct empirical analysis on NYUv2 [59] in Appendix D.2.
while Rep-MTL requires increased runtime than loss scal-
ing due to gradient computation, it exhibits better efficiency
compared to most gradient manipulation methods approxi-
mately 26% faster than Nash-MTL [49] and 12% faster than
FairGrad [2]), while delivering superior performance gains.



5. Conclusion

This paper presents Rep-MTL, a regularization-based MTO
approach that leverages representation-level task saliency to
advance multi-task training. By operating directly on task
representation space, Rep-MTL aims to preserve the effec-
tive training of individual tasks while explicitly exploiting
inter-task complementarity. Experiments not only reveal
Rep-MTL’s competitive performance, but highlight the sig-
nificant yet largely untapped potential of directly regulariz-
ing representation space for more effective MTL systems.
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Appendix

This appendix offers additional empirical analyses, exper-
imental results, and further discussions of our work. The
appendix sections are organized as follows:

* In Appendix A, we provide experimental setups and im-
plementation specifications across all four benchmarks
in this paper, including NYUv2 [59], Cityscapes [11],
Office-Home [62], and Office-31 [52]. This includes
comprehensive information on employed network archi-
tectures, optimization algorithms, training protocols, loss
functions, and hyper-parameter configurations.

* In Appendix B, we provide complete experimental results
on the Office-31 dataset, which were omitted from the
main manuscript due to space constraints. We also dis-
cuss the proposed Rep-MTL method combined with all
experimental results from four benchmarks.

* In Appendix C, we present additional ablation studies
through the lens of PL exponent alpha analysis [44, 46].
These studies further demonstrate how each mechanism
of Rep-MTL contributes to facilitating cross-task positive
transfer while preserving task-specific learning patterns,
thereby mitigating the negative transfer in MTL.

* In Appendix D, we conduct experiments to validate Rep-
MTL’s robustness and practical applicability, with par-
ticular emphasis on the sensitivity of hyper-parameters
Atsrs Aesa, learning rates, and its optimization speed.

A. Implementation Details

This appendix section provides an expansion of the experi-
mental configurations and implementation specifications of
the experiments from the main manuscript. We detail the
network architectures, optimizers, and training recipes for
each included benchmark to ensure reproducibility.

NYUv2 Dataset Following the implementations in pre-
vious studies [28, 30], we employ the DeepLabV3+ [5]
network architecture, containing a dilated ResNet 50 [17]
backbone pre-trained on ImageNet and the Atrous Spatial
Pyramid Pooling (ASPP) as task-specific decoders. The
MTL model is trained for 200 epochs using the Adam opti-
mizer with an initial learning rate of 10~ and weight decay
of 10~°. Consistent with prior works [28, 30], we imple-
ment a learning rate schedule where the rate is halved to
5 x 10~° after 100 training epochs. For the three tasks on
NYUV2 [59], we utilize cross-entropy loss for semantic seg-
mentation, L; loss for depth estimation, and cosine loss for
surface normal prediction. We adopted the same logarith-
mic transformation as in previous works [30, 34, 49]. Dur-
ing training, all input images are resized to 288 x 384, and
we set the batch size to 8. The experiments are implemented
with PyTorch and executed on NVIDIA A100-80G GPUs.
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Cityscapes Dataset The implementations for Cityscapes
benchmark demonstrate substantial alignment with the one
on NYUv2 [28, 30]. Specifically, we adopt the identi-
cal DeepLabV3+ [5] architecture, leveraging an ImageNet-
pretained dilated ResNet 50 network as the backbone,
while the ASPP module serves as task-specific decoders.
For model optimization, we establish a 200-epoch training
regime utilizing Adam optimizer, with the initial learning
rate of 107 and weight decay of 107°. The learning rate
undergoes a scheduled reduction to 5 x 10~ upon reaching
the 100-epoch milestone. We maintain consistency of loss
functions with NYUv2: cross-entropy loss and L; loss are
employed for semantic segmentation and depth estimation,
respectively. We also adopted logarithmic transformation
as in previous studies [30, 34, 49]. Throughout the training
process, all input images are resized to 128 x 256, and we
utilize a batch size of 64. The experiments are implemented
with PyTorch on NVIDIA A100-80G GPUs.

Office-Home Dataset Building upon established proto-
cols from prior works [28, 30], we implement an ImageNet-
pretrained ResNet-18 network architecture as the shared
backbone, complemented by a linear layer serving as task-
specific decoders. In pre-processing, all input images are
resized to 224 x 224. The batch size and the training epoch
are set to 64 and 100, respectively. The optimization process
employs the Adam optimizer with the learning rate of 10~
and the weight decay of 107°. We utilize cross-entropy
loss for all classification tasks, with classification accuracy
serving as the evaluation metric. We also adopted logarith-
mic transformation as in previous studies [30, 34, 49]. The
“Avg.” reported in the main manuscript represents the mean
performance gains across three independent tasks, which is
notably excluded from the calculation of overall task-level
performance gains. The experiments are implemented with
PyTorch and executed on NVIDIA A100-80G GPUs.

Office-31 Dataset The configurations on Office-31 [52]
dataset exhibit notable parallels with the ones on Office-
Home [28, 30]. Concretely, we deploy a ResNet-18 net-
work architecture pre-trained on the ImageNet dataset as the
shared backbone, complemented by task-specific linear lay-
ers for classification outputs. The data processing pipeline
standardizes input images to 224 x 224, while the training
protocol extends across 100 epochs with a fixed batch size
of 64. The Adam optimizer configured with a learning rate
of 10~* and the weight decay of 10~° is used. The cross-
entropy loss is used for all the tasks and classification accu-
racy is used as the evaluation metric. We adopted logarith-
mic transformation as in previous studies [30, 34, 49]. The
“Avg.” reported in the main manuscript represents the mean
performance gains across three independent tasks, which is
notably excluded from the calculation of overall task-level
performance gains. The experiments are implemented with



Table 5. Performance on Office-31 dataset with 3 diverse image
classification tasks. 1 indicates the higher the metric values, the
better the methods’ performance. The best and second-best results
of each metric are highlighted in bold and underline, respectively.

Method Amazon DSLR Webcam Avg.? Ap T
Single-Task Baseline 86.61 95.63 96.85 93.03 0.00
EW 83.53 97.27 96.85 92.55+0.62 0.6140.67
GLS [10] 82.84 95.62 96.29 91.594058 —1.6310.61
RLW [28] 83.82 96.99 96.85 92.5510.80 —0.5940.05
UW [22] 83.82 97.27 96.67 92.5840.84 —0.5610.90
DWA [35] 83.87 96.99 96.48 92454056 —0.7010.62
IMTL-L [34] 84.04 96.99 96.48 92.504052 —0.6310.58
IGBv2 [12] 84.52 98.36 98.05 93.64+1026 +0.5610.25
MGDA [13] 85.47 95.90 97.03 92.80+0.14 —0.2740.15
GradNorm [8] 83.58 97.26 96.85 92.56-+0.87 0.5910.94
PCGrad [66] 83.59 96.99 96.85 92.48.10.53 0.6810.57
GradDrop [9] 84.33 96.99 96.30 92541042 —0.5940.46
GradVac [63] 83.76 97.27 96.67 92.574073 —0.5810.78
IMTL-G [34] 83.41 96.72 96.48 92.2040.89 —0.9710.95
CAGrad [32] 83.65 95.63 96.85 92.0441079 —1.1410.35
MTAdam [42] 85.52 95.62 96.29 92481087 —0.6040.93
Nash-MTL [49] 85.01 97.54 97.41 93.3210.82  +0.2440.89
MetaBalance [19] 84.21 95.90 97.40 92.50+0.28 0.6340.30
MoCo [15] 84.33 97.54 98.33 93.39 -
Aligned-MTL [55] 83.36 96.45 97.04 92281046 —0.9040.48
IMTL [34] 83.70 96.44 96.29 92141085 —1.0240.02
DB-MTL [30] 85.12 98.63 9851  94.09.4;9 +1.0540.20
Rep-MTL (EW) 85.93 98.54 98.67 94381053 +1.314055

PyTorch and executed on NVIDIA A100-80G GPUs.

B. Office-31 Image Classification Results

This appendix section provides a thorough discussion of
our experimental results on Office-31 [52] dataset, present-
ing detailed observations of performance that were omitted
from the main text due to space limitations.

As shown in Table 5, Rep-MTL achieves the highest
overall performance among all compared MTO methods. It
obtains an average accuracy (Avg.T) of 94.38% and a total
performance gain (Apgk 1) of +1.31% over the single-task
learning (STL) baseline. This result surpasses the next-best
method, DB-MTL, which achieves a gain of +1.05%, and
stands in stark contrast to the Equal Weighting (EW) base-
line that suffers from negative transfer among tasks (A =
—0.61%). This demonstrates Rep-MTL’s superior ability to
effectively manage multi-domain learning on Office-31.

In addition, task-specific performance reveals several
notable findings. First, on both the Webcam and Ama-
zon domains, Rep-MTL achieves competitive accuracies
of 98.67% and 85.93%, respectively. Its performance on
the challenging Amazon domain is particularly noteworthy,
outperforming the strong DB-MTL [30] baseline by a sig-
nificant margin of +0.81%. This improvement is particu-
larly significant due to the varying lighting conditions and
image quality. Second, on DSLR domain, Rep-MTL de-
livers a competitive accuracy of 98.54%, narrowly trailing
DB-MTL [30] (98.63%) in a tightly contested result.

These results offer key insights into the strengths and
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Ablations through PL Exponent Analysis of Backbone Parameters
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Figure 5. Ablation studies through PL exponent metrics [46] for
shared parameters in backbones trained with or without cross-
task saliency alignment (notated as “Rep-MTL w/o CA”) on
NYUv2 [59]. The PL exponent alpha quantifies how well the
backbone adapts to the overall MTL objectives, where lower val-
ues indicate more effective training. Values outside the range [2, 6]
suggest potential over- or under-training due to the insufficient
cross-task positive transfer. We leverage this measurement to val-
idate the effectiveness of the cross-task saliency alignment mech-
anism in our proposed Rep-MTL, as well-trained backbones sug-
gest beneficial information sharing to the overall MTL objectives.

limitations of Rep-MTL. On one hand, Rep-MTL demon-
strates capabilities to handle multiple tasks effectively, con-
sistently achieving balanced and top-tier performance gains
across different tasks. The substantial gains on the Amazon
and Webcam tasks more than compensate for the marginal
difference on DSLR, leading to the best overall average. On
the other hand, however, this balanced approach comes with
a trade-off: while Rep-MTL avoids significant performance
degradation in task-specific performance compared to ex-
isting methods, it may not consistently achieve significant
gains across all sub-tasks simultaneously. This observation
is particularly evident in the results of the DSLR task on
Office-31 [52] dataset, where Rep-MTL achieves strong but
not leading performance.

Overall, the experimental results suggest that while Rep-
MTL has successfully advanced the state-of-the-art in chal-
lenging multi-task dense prediction benchmarks, there re-
mains scope for further enhancement. Future research di-
rections could focus on developing mechanisms to maintain
the current balanced performance with explicit information
sharing while pushing the boundaries of task-specific excel-
lence. This could potentially involve exploring more com-
plex cross-task interactions or adaptive optimization strate-
gies that can better leverage task-specific characteristics.

C. Ablations with PL. Exponent Alpha Metrics

While our analysis in Section 4.3 demonstrates Rep-MTL’s
overall effectiveness in achieving effective multi-task learn-
ing—facilitating positive cross-task information sharing
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Figure 6. Ablation studies through PL exponent metrics [44, 460] for parameters in diverse decoders trained with or without task-specific
saliency regulation in Rep-MTL (notated as “Rep-MTL w/o TR”) on NYUv2 [59]. The PL exponent alpha quantifies how well each decoder
adapts to its task-specific objective, where lower values indicate more effective training. Values outside the range [2, 6] suggest potential
over- or under-training due to task conflicts. The variation across different heads of each method indicates training imbalance. We leverage
this measurement to validate the effectiveness of task-specific saliency regulation in Rep-MTL, as well-trained decoders should exhibit
both low and balanced metric values, indicating successful negative transfer mitigation while preserving task-specific information. The
results show that task-specific saliency regulation effectively helps task-specific learning and yields superior and more balanced metrics.

while preserving task-specific patterns for negative transfer
mitigation—it does not isolate the contributions of individ-
ual components. This appendix section thus presents an ad-
ditional empirical evaluation of Rep-MTL’s two key mech-
anisms: Cross-Task Saliency Alignment (CA) and Task-
specific Saliency Regularization (TR). We first introduce
the practical implications of this metric, followed by abla-
tion studies examining each component’s effectiveness and
distinct contribution to Rep-MTL’s overall performance.

C.1. Power Law (PL) Exponent Alpha Analysis

To rigorously evaluate the effectiveness of Rep-MTL’s
components beyond commonly-used performance metrics,
we employ Power Law (PL) exponent alpha [44, 46], a
theoretically grounded measure from Heavy-Tailed Self-
Regularization (HT-SR) theory [41, 45]. It provides a sys-
tematic framework for analyzing the representation capac-
ity and overall learning quality of deep neural networks. In
particular, PL exponent alpha is computed for each layer’s
weight matrix W by fitting the Empirical Spectral Density
(ESD) of its correlation matrix X = W7 to a truncated
Power Law distribution: p(A) ~ A~%, where p(\) denotes
the ESD, and A represents eigenvalues of correlation matrix.

Empirical studies have established that well-trained neu-
ral networks typically exhibit PL exponent values within the
range o € [2,4]. Values outside this range often indicate
suboptimal training dynamics: specifically, & < 2 suggests
insufficient learning, while o > 6 indicates potential over-
parameterization or training instabilities. This characteristic
makes the PL exponent particularly valuable for assessing
training effectiveness across different network architectures
and optimization strategies.
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In the context of multi-task learning, this metric offers
unique insights into both cross-task knowledge transfer and
task-specific learning patterns. In particular, for shared
backbone parameters, lower alpha values (within the opti-
mal range) typically indicate effective cross-task informa-
tion sharing, suggesting successful optimization toward the
overall MTL objectives. For task-specific heads, balanced
and moderately low alpha values across different tasks sug-
gest the preservation of task-specific patterns while mini-
mizing negative transfer effects. Built upon this view, we
can systematically evaluate how each component in Rep-
MTL contributes to achieving optimal MTL dynamics.

C.2. Effects of Cross-Task Saliency Alignment

Similar to the empirical analysis in Section 4.3, we analyze
the effectiveness of Cross-Task Saliency Alignment by ex-
amining PL exponent alpha of the DeepLabV3+ backbone
parameters on NYUv2 [59] dataset.

As shown in Figure 5, models trained with our cross-
task alignment mechanism exhibit alpha values within the
optimal range of [2, 4], indicating well-learned and gener-
alizable model parameters in the shared backbone, compar-
ing models trained with and without this alignment mecha-
nism. This demonstrates the effectiveness of our Cross-Task
Saliency Alignment for positive information sharing.

C.3. Effects of Task-specific Saliency Regulation

To evaluate the impact of Task-specific Saliency Regula-
tion, we examine the PL exponent alpha of parameters in
the DeepLabV3+ task decoder parameters on NYUv2 [59].

As illustrated in Figure 6, the result reveals that mod-
els employing our regulation mechanism demonstrate al-
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Figure 7. Hyper-parameter sensitivity analysis of our Rep-MTL
on NYUvV2 [59] dataset. We empirically evaluate the impact of
two critical hyper-parameters, Ats» and Acsq, by fixing one as
A = 0.9 while varying the other one across a comprehensive range
as {0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9}.  The results
demonstrate that Rep-MTL maintains stable and competitive per-
formance Apgs over a substantial range (0.7,0.9,1.1,1.3,1.5),
indicating its robust insensitivity to hyper-parameter variations.

pha values consistently within the optimal range and exhibit
more balanced values across all task-specific heads. This
balanced distribution suggests the successful preservation
of task-specific features while avoiding over-specialization
or interference between tasks (2.60,2.63,2.45). In con-
trast, models trained with Rep-MTL without this regula-
tion mechanism exhibit poor and more dispersed PL expo-
nent alpha across decoders (2.89,2.74,2.59). This wider
variation indicates potential negative transfer and subopti-
mal task-specific learning. The consistency of alpha val-
ues across different task heads in regulated models provides
strong evidence that the Task-specific Saliency Regulation
in Rep-MTL effectively maintains task-specific patterns.

D. Additional Empirical Analysis

This appendix section presents an empirical investigation
designed to further validate the effectiveness and robust-
ness of Rep-MTL. We conduct empirical analyses of hyper-
parameter sensitivity and computational efficiency to pro-
vide insights into the practical deployment considerations.

D.1. Analysis of Hyper-parameter Sensitivity

We systematically evaluate Rep-MTL’s sensitivity to its
two primary hyper-parameters, A;s- and A.sq, on the
NYUv2 [59] dataset.  Figure 7 illustrates the task-
level performance gains relative to STL baselines (Apgk)
across various hyper-parameter configurations. Our anal-
ysis involves fixing one hyper-parameter at 0.9 while
varying the other one across a comprehensive range:
{0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9}. For example,
when evaluating the sensitivity of hyper-parameter g,
when fixing the A\ s, = 0.9 then conduct a series of exper-
iments. All experiments are conducted on NVIDIA A100-
80G GPUs to ensure consistent evaluation conditions.
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Figure 8. Training time per epoch comparison across different
MTL optimization methods on NYUv2 [59]. Methods are cate-
gorized into three training efficiency tiers (indicated by different
colors), highlighting the inherent trade-off between computational
speed and optimization effectiveness in MTL scenarios.

The results reveal several key findings: First, Rep-MTL
demonstrates great stability across a wide range of hyper-
parameter combinations, particularly within the range of
{0.7,0.9,1.1,1.3, 1.5} for both A, and A.s,. Second, the
method consistently achieves positive performance gains
(Apusk > 0) across most hyper-parameter settings, indicat-
ing robust improvement over STL baselines. Third, Cross-
task Saliency Alignment (CSA) in Rep-MTL, controlled by
Acsas acts as a crucial component. While small values of
Acsq lead to suboptimal performance, increasing it beyond
a certain threshold demonstrates a significant impact on the
overall MTL performance. Based on these observations, we
conducted grid search over {0.7,0.9,1.1,1.3, 1.5} for both
Atsr and A g, to determine optimal configurations for all
datasets in this paper.

D.2. Analysis of Training Time

To further evaluate the efficiency of Rep-MTL, we conduct
a runtime empirical analysis on NYUv2 [59] dataset. Fig-
ure 8 presents the average per-epoch training time across
different MTL optimization methods, with all experiments
conducted over 100 epochs on NVIDIA A100-80G GPUs.
Our analysis reveals that Rep-MTL achieves a compara-
tively favorable balance between training speed and opti-
mization effectiveness. While it requires more training re-
sources than loss scaling methods due to the computation
of task saliencies as task-specific gradients in the represen-
tation space, it demonstrates superior efficiency compared
to most gradient manipulation methods. This increased cost
is inherent to approaches requiring second-order (gradient)
information, representing a fundamental trade-off and room
for further improvement in MTL optimization.

D.3. Analysis of Learning Rate Scaling

Recent studies [64] suggest that different choice of learn-
ing rate may impose a strong impact on MTO methods
performance. To further demonstate Rep-MTL’s robust-
ness, we conduct experiment of learning rate sensitivity on
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Figure 9. Learning rate sensitivity analysis of our proposed Rep-
MTL on NYUV2 [59] dataset. To evaluate the impact of learning
rate variations, we systematically scale the learning rate from the
default benchmark setting of le — 4 to 5e — 4, using a step size
of be — 5. For each setting, we report the task-level (Apug) and
metric-level (Apmewic) performance gains. Each experiment is re-
peated three times. The results show that Rep-MTL maintains sta-
ble and competitive Apgsk and Apmeric Over a substantial range,
indicating its favorable robustness to learning rate variations.

NYUv2 [59] with diverse learning rate settings, as illus-
trated in Figure 9. Specifically, we scale the learning rate
from the default benchmark setting of 1e — 4 to 5e — 4 with
a step size of 5e — 5. For each setting, we measure the
task-level (Apk) and metric-level (Apmeric) performance
gains. The results show that Rep-MTL maintains stable and
competitive Apgsk and Appenic OVer a substantial range, in-
dicating its favorable robustness to learning rate variations.
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